Electric Circuit Analysis

TUTORIAL CONTENT

- 1. The Anatomy of the Cell
- 2. Network Reductions
- 3. p.d. and Current Dividers
- Ohm's, Joule's and intro to Kirchhoff's KCL & KVL*

G. David Boswell | Chronicles of BÖ§ZïK Inc.™

The 21st Century

Anatomy of the Cell

Example 01.

The e.m.f. of a cell is 1.67 V. When it is connected to a 10- Ω resistor, its terminal p.d. was measured to be 1.50V.

Calculate

- (a) the current through the $10-\Omega$ external resistor,
- (b) the internal resistance of the cell, and
- (c) the rate of energy loss in the cell (i.e., power loss, P_{loss}).

Anatomy of the Cell

Response 01.

- First, whenever relevant, draw a simplified line diagram that shows problem understanding.
- Note very well that when the cell <u>supplies</u> current I to the load R, then the e.m.f., E, will be greater than the terminal p.d., V. In this case, E-V = Ir

Anatomy of the Cell

Terminal p.d.: V = IR

Response 01(a).

The terminal p.d. is also the voltage across the load resistor, R,

Applying Ohm's Law,

$$I = \frac{V}{R}$$
$$= \frac{1.50 V}{10 \Omega}$$
$$= 0.15 A$$

Anatomy of the Cell

Cell Model: V = E - Ir

Response 01(b).

Recall that, for a source,

E - V = Ir

Therefore,

$$r = \frac{E - V}{I}$$

= $\frac{(1.67 - 1.50) V}{0.15 A}$
= 1.13 Ω
 $\approx 1.1 \Omega$

Response 01(c).

Due to the internal resistance,

$$P_{loss} = I^2 r$$
$$= (0.15 A)^2 \times 1.13 \Omega$$
$$\approx 26 \text{ mW}$$

Reader ~ Another approach is:

$$P_{loss} = P_{in} - P_{out}$$
$$= EI - VI$$
$$= (E - V)I$$

G. David Boswell | BÖ§ZïK Inc.™ MSE

Anatomy of the Cell

Example 02.

The terminal p.d. of an interconnections of cells (i.e. a battery) on open-circuit is 100 V. When it delivers a current of 20.0A to a circuit, its terminal p.d. falls to 95.4V.

Calculate

- (a) the efficiency of the battery, η .
- (b) the power output of the battery, P_{out} .

Anatomy of the Cell

Response 02(a).

If P_{in} is the input power conversion to electrical <u>inside</u> the battery, and P_{out} is the output power conversion <u>at the</u> <u>terminals</u> of the battery, then the efficiency of the battery is

$$\eta = \frac{P_{out}}{P_{in}} \times 100\%$$

= $\frac{V}{E} \times 100\%$ since $P_{out} = VI$ and $P_{in} = EI$
= $\frac{95.4}{100} \times 100\%$
= 95.4 %

Anatomy of the Cell

Response 02(b).

 P_{out} is the output power conversion from electrical to other forms realized <u>at the terminals</u> of the battery.

For this problem,

$$P_{out} = VI$$

= 95.4 V × 20.0 A
= 1,890 W
= 1.89 kW

Example 03.

- (a) Find R_{eq} , the equivalent resistance of the network shown.
- (b) Repeat (a) when $R_4 = 0\Omega$ (i.e., an ideal short circuit)
- (c) Repeat (a) when $R_4 \rightarrow \infty$ (i.e., a practical open circuit)

Response 03(a).

Using the formulations for resistors in series and parallel,

$R_{eq} = R_1 + \frac{R_2 (R_3 + K_3)}{R_2 + (R_3 + K_3)}$	$\left(\frac{R_4}{R_4}\right)$ "product over sum"
$= R_1 + \frac{R_2}{2}$	since, in this case, $R_2 = R_3 + R_4$
$= 75\Omega + 165\Omega$	
$= 240 \Omega$	

NB: (a) For n equal resistors in series: $R_S = nR$ (b) For n equal resistors in parallel: $R_P = \frac{R}{n}$

G. David Boswell | BÖ§ZïK Inc.™ MSE

Response 03(b).

When \mathbf{R}_4 is "shorted," then

$$R_{eq} = R_1 + \frac{R_2 R_3}{R_2 + R_3}$$

= 75\Omega + $\left(\frac{330 \times 150}{330 + 150}\right)\Omega$
= 178.1\Omega

NB: For 2 resistors in parallel, we utilize "product over sum": $R_a / R_b = \frac{R_a R_b}{R_a + R_b}$

G. David Boswell | BÖ§ZïK Inc.™ MSE

Response 03(c).

When \mathbf{R}_4 is "opened," then because its loop is broken, \mathbf{R}_1 and \mathbf{R}_2 are now in series such that

$$R_{eq} = R_1 + R_2$$
$$= 75\Omega + 330\Omega$$
$$= 405\Omega$$

Example 04.

- (a) Find R_T , the total resistance of the network shown.
- (b) Compute the p.d. across each resistor.

Response 04(a).

Using the formulation for combining 3 resistors in series,

$$R_{T} = \sum_{i=1}^{3} R_{i}$$

= $R_{1} + R_{2} + R_{3}$
= $18\Omega + 10\Omega + 2\Omega$
= 30Ω

• A

Response 04(b).

The p.d. across each resistor in the series network is

Note that, in accordance with KVL: $V_T = \sum_{i=1}^{n} V_i$

Example 05.

- (a) Find R_T , the total resistance of the network shown.
- (b) Compute the p.d. across each resistor.
- (c) Hence, calculate the V_C and V_B , the potentials at nodes C and B, respectively.

Response 05(a).

Using the formulation for combining 4 resistors in series, we get

$$R_T = \sum_{i=1}^{4} R_i$$

= $R_1 + R_2 + ... + R_4$
= $330 + 470 + 820 + 180 \quad \Omega$
= $1,800 \quad \Omega$
= $1.80 \quad k\Omega$

Response 05(b).

The respective p.d. across the first 2 resistors in the network is

$$V_{1} = \frac{R_{1}}{R_{T}} V_{T} \qquad V_{2} = \frac{R_{2}}{R_{T}} V_{T}$$
$$= \frac{330\Omega}{1,800\Omega} \times 36V \qquad = \frac{470\Omega}{1,800\Omega} \times 36V$$
$$= \frac{6.6 \text{ V}}{0.4 \text{ V}} = 9.4 \text{ V}$$

Response 05(b). (cont.d)

Similarly, for the other 2 resistors in the series circuit,

Note that, in accordance with KVL: $V_T - \sum_{i=1}^{n} V_i = 0$ volts

G. David Boswell | BÖ§ZïK Inc.™ MSE

Response 05(c).

The reference p.d. is $V_G = 0V$. And, based on battery polarity,

$V_C = V_G - V_2$	$V_B = V_G + V_3$
= 0V - 9.4V	= 0V + 16.4V
= -9.4V	=16.4V

The lowest voltage potential is at node D and the highest voltage potential is at node A.

Example 06.

- (a) Find R_T , the total resistance of the network show
- (b) Calculate the total current in the circuit.
- (c) Compute the current through each resistor and that Kirchnon s Current Law (KCL) holds true.

Response 06(a).

Using the formulation for combining 2 resistors in parallel, we get

$$R_T = \left(\frac{1}{R_1} + \frac{1}{R_{12}}\right)^{-1}$$
$$\equiv \frac{R_1 R_2}{R_1 + R_2}$$
$$= \frac{1000 \times 600}{1000 + 600} \quad \Omega$$
$$= 375 \quad \Omega$$

(all values in the same units!)

Response 06(b).

Using Ohm's Law, the total current in the circuit is

$$I_T = \frac{V_A}{R_T}$$
$$= \frac{15V}{375\Omega}$$
$$= 0.040A$$
$$= 40 \text{ mA}$$

Response 06(c).

Using the Current Divider formulation, then the current in the respective parallel branches are

$$I_{1} = \left(\frac{R_{2}}{R_{1} + R_{2}}\right) I_{T} \qquad I_{2} = \left(\frac{R_{1}}{R_{1} + R_{2}}\right) I_{T}$$
$$= \frac{600\Omega}{1600\Omega} \times 40 mA \qquad = \frac{1000\Omega}{1600\Omega} \times 40 mA$$
$$= 15 \text{ mA} \qquad = 25 \text{ mA}$$

Response 06(c). (cont.d)

Now, the algebraic sum of the currents at node X in the circuit is

$$\sum_{At \text{ Node X}} I = I_1 + I_2 - I_T$$
$$= (15 + 25 - 40) mA$$
$$= 0$$

Therefore, KCL is verified.

Example 07.

- (a) Find R_T , the total resistance of the network shown.
- (b) Compute the total current from the 18V source.
- (c) Compute the current through each each resistor.

Response 07(a).

The total resistance of the parallel network is

Response 07(b).

The total current delivered by the source is

Response 07(c).

Since all 3 resistors are in parallel with the source, then:

$I_1 = \frac{V_A}{R_1}$	$I_2 = \frac{V_A}{R_2}$	$I_3 = \frac{V_A}{R_3}$
_ 18 <i>V</i>	_ 18 <i>V</i>	_ 18 <i>V</i>
$=\overline{30}\overline{\Omega}$	$=\frac{1}{20}\overline{\Omega}$	$=\frac{1}{60} \overline{\Omega}$
= 0.6 A	= 0.9 A	= 0.3 A

Reader: Using these results, please verify KCL:

$$\sum_{at node} I = 0A$$

Example 08.

(a) Find R_{eq} , the total resistance of the network shown.

(b) Compute V_{AB} and the power loss in R_3 .

Response 08(a).

Using the formulations for resistors in series and parallel,

$$R_{eq} = R_1 + \frac{R_2 R_3}{R_2 + R_3} + R_4$$

= 100\Omega + $\left(\frac{1.5 \times 1}{1.5 + 1}\right) k\Omega + 150\Omega$
= 250\Omega + 600\Omega
= 850\Omega

NB: (a) For 2 resistors in parallel, "product over sum" is quickly used.

(b) Please pay attention the mixed units and the final conversions!

G. David Boswell | BÖ§ZïK Inc.™ MSE

Response 08(b).

First, find the total current delivered by the source is

Response 08(b). (cont.d)

Now, the total voltage drop across $\mathbf{R}_1 \& \mathbf{R}_4$, which are in series, is

$$\Delta V = I_T \left(R_1 + R_4 \right)$$
$$= 20 mA \times (100 + 150) \Omega$$
$$= 5 V$$

So, the required p.d. across nodes A and B is

$$V_{AB} = V_T - \Delta V$$
$$= 17V - 5V$$
$$= 12 \text{ V}$$

Response 08(b). (cont.d)

And, finally, power loss in \mathbf{R}_3 is

 $P_{3} = \frac{V_{AB}^{2}}{R_{3}} \qquad \text{(Joule's Law)}$ $= \frac{(12V)^{2}}{k\Omega}$ $= 144 \times 10^{-3} W$ = 144 mW

R2S Legacy Tutorial 03 Electric Circuit Analysis

Anatomy of the Cell

Question 01.

The e.m.f. of a cell is 10.7 V. When it is connected to a 12.0- Ω load resistor, the terminal p.d. drooped by 10.0%. Calculate

- (a) the terminal p.d. of the cell, V.
- (b) the load current *I*.
- (c) the internal resistance of the cell, *r*.
- (d) the rate of energy loss in the cell (i.e., power loss, P_{loss})
- (e) the *fractional efficiency* of the cell.

Question 02.

- (a) Find R_{eq} , the equivalent resistance of the network shown.
- (b) Repeat (a) when $R_3 = 0$ and $R_4 \rightarrow \infty$ simultaneously.

Question 03.

- (a) Find R_T , the total resistance of the network shown.
- (b) Compute, V_1 , V_2 and V_3 , the respective voltage drops across each resistor.

Question 04.

- (a) Find R_S , the total resistance of the network shown.
- (b) Compute the p.d. across each resistor.
- (c) Hence, calculate the V_C and V_B , the potentials at nodes C and B, respectively.

Question 05.

- (a) Find R_T , the total resistance of the network shown.
- (b) Hence, compute the total current supplied and also the current through each each of the 4 resistors.

Question 06.

- (a) Find R_P , the total resistance of the network shown.
- (b) Compute the current supplied by the source voltage.
- (c) Compute the current through each resistor and verify the Kirchhoff's Current Law (KCL) holds true.

BÖ§ZïK Inc.™ MSE

Question 07.

- (a) Find resistances \mathbf{R}_1 and \mathbf{R}_2 using Ohm's and Joule's Law.
- (b) Use "Current Division" <u>and</u> Ohm's Law to find I_1 and I_2 .

Network Analysis

Question 08.

(a) Find R_{eq} , the total resistance of the network shown.

(b) Compute V_{AB} and the *power* losses in R_1 and R_5 .

R2S Legacy Tutorial 04 Mesh and Nodal Analyses

10.12.21 ... High Noon*

G. David Boswell | BÖ§ZïK Inc.™ MSE

Electric Circuit Analysis

Thank You

© BÖ§ZïK Inc.™ All Publication Rights Reserved

For more information, please visit: http://www.boszik.net/projects