Electric Circuit Analysis

TUTORIAL CONTENT

- 1. The Anatomy of the Cell
- 2. Network Reductions
- 3. p.d. and Current Dividers
- 4. Ohm's, Joule's and intro to Kirchhoff's KCL & KVL*

G. David Boswell | Chronicles of BÖ§ZïK Inc.™

The 21st Century

Anatomy of the Cell

Example 01.

The e.m.f. of a cell is **1.67 V**. When it is connected to a **10-Ω** resistor, its terminal p.d. was measured to be **1.50V**.

Calculate

- (a) the current through the **10-Ω** external resistor,
- (b) the internal resistance of the cell, and
- (c) the rate of energy loss in the cell (i.e., power loss, P_{loss}).

Anatomy of the Cell

Response 01.

First, whenever relevant, draw a simplified line diagram that shows problem understanding*.*

Note very well that when the cell supplies current **I** to the load **R**, then the e.m.f., **E**, will be greater than the terminal p.d., **V**. In this case, **E−V = Ir**

Anatomy of the Cell

Terminal p.d.: $V = IR$

Response 01(a).

The terminal p.d. is also the voltage across the load resistor, R,

Applying Ohm's Law,

$$
I = \frac{V}{R}
$$

$$
= \frac{1.50 \text{ V}}{10 \text{ }\Omega}
$$

$$
= 0.15 \text{ A}
$$

Anatomy of the Cell

Cell Model: $V = E - Ir$

Response 01(b).

Recall that, for a *source*,

 $E - V = Ir$

Therefore,

$$
r = \frac{E - V}{I}
$$

=
$$
\frac{(1.67 - 1.50) V}{0.15 A}
$$

= 1.13 Ω
= 1.1 Ω

Response 01(c).

Due to the internal resistance,

$$
P_{loss} = I^2 r
$$

= $(0.15 \text{ A})^2 \times 1.13 \Omega$
 $\approx 26 \text{ mW}$

Reader ~ Another approach is:

$$
P_{loss} = P_{in} - P_{out}
$$

$$
= EI - VI
$$

$$
= (E - V)I
$$

G. David Boswell | BÖ§ZïK Inc.™ MSE

Anatomy of the Cell

Example 02.

The terminal p.d. of an interconnections of cells (i.e. a battery) on open-circuit is **100 V**. When it delivers a current of **20.0A** to a circuit, its terminal p.d. falls to **95.4V**.

Calculate

- (a) the efficiency of the battery, η .
- (b) the power output of the battery, P_{out} .

Anatomy of the Cell

Response 02(a).

If **Pin** is the input power conversion to electrical inside the battery, and P_{out} is the output power conversion <u>at the</u> terminals of the battery, then the efficiency of the battery is

$$
\eta = \frac{P_{out}}{P_{in}} \times 100\%
$$

= $\frac{V}{E} \times 100\%$ since $P_{out} = VI$ and $P_{in} = EI$
= $\frac{95.4}{100} \times 100\%$
= 95.4 %

Anatomy of the Cell

Output Power

$$
P_{out} = VI = \eta EI
$$

Response 02(b).

Pout is the output power conversion from electrical to other forms realized at the terminals of the battery.

For this problem,

$$
P_{out} = VI
$$

= 95.4 V × 20.0 A
= 1,890 W
= 1.89 kW

Network Reduction ! **I YCLYYUI N INCUULLIUII 2**

Example 03.

- (a) Find R_{eq} , the equivalent resistance of the network shown. **Figure 6–33**
- (b) Repeat (a) when. $R_4 = 0\Omega$ (i.e., an ideal short circuit)
- (c) Repeat (a) when $R_4 \rightarrow \infty$ (i.e., a practical open circuit) **Figure 6–30** \mathcal{L} $R_4 \rightarrow \infty$

Network Reduction

Response 03(a).

Using the formulations for resistors in series and parallel,

NB: (a) For n equal resistors in series: (b) For n equal resistors in parallel: $R_p = \frac{R}{r}$ $R_S = nR$ *n*

Network Reduction Reduction $R = |\nabla R|$

Figure 6–30

Response 03(b).

When **R4** is "shorted," then

$$
R_{eq} = R_1 + \frac{R_2 R_3}{R_2 + R_3}
$$

= $75\Omega + \left(\frac{330 \times 150}{330 + 150}\right)\Omega$
= 178.1 Ω

NB: For 2 resistors in parallel, we utilize "product over sum": $R_a / R_b = \frac{R_a R_b}{R_b + R_b}$ $R_a + R_b$

G. David Boswell ∣ BÖ§ZïK Inc.™ MSE

Network Reduction **SECULTION**

Figure 6–30

Figure 6–31

6–21 In Fig. 6–31, solve for *R*^T

Response 03(c).

When \mathbf{R}_4 is "opened," then because its loop is broken, **R1** and **R₂** are now in series such that

$$
R_{eq} = R_1 + R_2
$$

= 75 Ω + 330 Ω
= 405 Ω

Potential Divider rolential Divider

Example 04. SECTION 4–9 GROUND CONNECTIONS IN ELECTRICAL AND ELECTRONIC SYSTEMS

- (a) Find R_T , the total resistance of the network shown. $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ the total resistance of the
- (b) Compute the p.d. across each resistor.

Potential Divider drawing 150 mA of current. How much is the applied to the application of the applied to the applied to

Response 04(a).

Using the formulation for combining 3 resistors in series,

$$
R_{T} = \sum_{i=1}^{3} R_{i}
$$

= $R_{1} + R_{2} + R_{3}$
= $18\Omega + 10\Omega + 2\Omega$

$$
V_{T} = 18V \frac{1}{100}
$$

$$
R_{2} = 10 k\Omega
$$

$$
R_{3} = 2 k\Omega
$$

A

ELECTRICAL AND ELECTRONIC SYSTEMS

Response 04(b).

The p.d. across each resistor in the series network is

Note that, in accordance with KVL: $\quad V_{T} = \sum V_{i}$ *i*=1 *n*

Potential Divider The voltage drop and unknown resistor is 12 V and unknown resistor in the unknown resistor is 12 V and unk **4-47** In Fig. 4–45, solve for *V*AG , *V*BG , *V* CG , and *V* DG .

Figure 4–45

Example 05. CONTER 4-41 A 1.5-k! resistor is in series with an unknown resistance. $\frac{1}{\sqrt{2}}$

- (a) Find $R_T^{}$, the total resistance of the network shown. **4-43** A 1-k! and 1.5-k! resistor are in series. If the total $\frac{1}{2}$ is to be operated from $\frac{1}{2}$
- Compute the p.d. across each resistor. the applied voltage, *V*^T (b) derawing 150 materials 150
- (c) Hence, calculate the V_C and V_B, the potentials **44 A** α at nodes α and β , respectively. **ELECTRIC V** B, C

Response 05(a).

Using the formulation for combining 4 resistors in series, we get

$$
R_T = \sum_{i=1}^{4} R_i
$$

= $R_1 + R_2 + ... + R_4$
= 330 + 470 + 820 + 180 Ω
= 1,800 Ω
= 1.80 k Ω

Response 05(b).

The respective p.d. across the first 2 resistors in the network is

$$
V_1 = \frac{R_1}{R_T} V_T
$$

= $\frac{330 \Omega}{1,800 \Omega} \times 36V$
= 6.6 V

$$
V_2 = \frac{R_2}{R_T} V_T
$$

= $\frac{470 \Omega}{1,800 \Omega} \times 36V$
= 9.4 V

Response 05(b). (cont.d)

Similarly, for the other 2 resistors in the series circuit,

Note that, in accordance with KVL: $V_T - \sum V_i$ *i*=1 *n* $\sum V_i = 0$ volts

G. David Boswell | BÖ§ZïK Inc.™ MSE

Potential Divider **4-40** A 120-! resistor is in series with an unknown resistor. **4-47** In Fig. 4–45, solve for *V*AG , *V*BG , *V* CG , and *V* DG .

Response 05(c). The applied voltage, *V*T , equals 36 V and the series current

The reference p.d. is $V_G = 0V$. And, based on battery polarity, **4-42** How much resistance must be added in series with a .3.4-And, based on battery polarity

The lowest voltage potential is at **node D and the highest voltage** *potential is at node A.* **4-45** In Fig. 4–43, solve for *V*AG , *V* BG , and *V*CG .

Example 06.

- (a) Find R_T , the total resistance of the network show
- (b) Calculate the total current in the circuit. **Example 5-12 Second 11 C**
Example 12 October 10 O
Contract 10 October 10 October 10 October 10 October 10 October 10 October 10 Octob
- (c) Compute the current through each resistor and $\frac{1}{2}$ that Kirchnott's Current Law (KCL) holds true. In Fig. 5–4, solve for the branch currents *I*1 and *I*2 . **ANSWER** The applied voltage, *V*A , of 15 V is across both resistors *R*1 and *R*2 . **Multi***Sim* **Figure 5–4** Circuit for $\overline{1}$

Therefore, the branch currents are calculated as ___

voltage and *R* is the individual branch resistance.

Response 06(a).

Using the formulation for combining 2 resistors in parallel, we get

$$
R_T = \left(\frac{1}{R_1} + \frac{1}{R_{12}}\right)^{-1}
$$

= $\frac{R_1 R_2}{R_1 + R_2}$
= $\frac{1000 \times 600}{1000 + 600}$ Q (al)
= 375 Q

Il values in the same units!)

Response 06(b).

Using Ohm's Law, the total current in the circuit is

$$
I_T = \frac{V_A}{R_T}
$$

=
$$
\frac{15V}{375\Omega}
$$

= 0.040A
= 40 mA

Response 06(c).

Using the Current Divider formulation, then the current in the respective parallel branches are

$$
I_1 = \left(\frac{R_2}{R_1 + R_2}\right) I_T
$$

\n
$$
= \frac{600 \Omega}{1600 \Omega} \times 40 mA
$$

\n
$$
= 15 mA
$$

\n
$$
I_2 = \left(\frac{R_1}{R_1 + R_2}\right) I_T
$$

\n
$$
= \frac{1000 \Omega}{1600 \Omega} \times 40 mA
$$

\n
$$
= 25 mA
$$

Response 06(c). (cont.d)

Now, the algebraic sum of the currents at node X in the circuit is

$$
\sum_{\text{At Node X}} I = I_1 + I_2 - I_T
$$

= $(15 + 25 - 40) mA$
= 0

Therefore, KCL is verified.

Current Divider **5–4 In Fig. 5–19, Solve For the Branch Current Divider**

Example 07. 5–6 In Fig. 5–19, assume a 10-! resistor, *R* 3 , is added across

- (a) Find R_T , the total resistance of the network shown.
- (b) Compute the total current from the I8V source.
- (c) Compute the current through each each resistor.

Current Divider rent Divider r r r r r r r r \mathbf{p}

b. Explain how the branch currents, *I*1 and *I*2 are affected

Response 07(a).

The total resistance of the parallel network is **5–7** In Fig. 5–20, solve for the branch currents *I*1 , *I*2 , and *I*3 .

Current Divider rent Divider r r r r r r r r \mathbf{p}

b. Explain how the branch currents, *I*1 and *I*2 are affected

Response 07(b).

The total current delivered by the source is **5–7** In Fig. 5–20, solve for the branch currents *I*1 , *I*2 , and *I*3 .

Response 07(c).

Since all 3 resistors are in parallel with the source, then:

Reader: Using these results, please verify KCL:

$$
\sum_{at\ node} I = 0A
$$

Network Analysis Ana

Example 08.

(a) Find R_{eq} , the total resistance of the network shown.

(b) Compute V_{AB} and the power loss in R_3 .

Network Analysis

Response 08(a).

Using the formulations for resistors in series and parallel,

$$
R_{eq} = R_1 + \frac{R_2 R_3}{R_2 + R_3} + R_4
$$

= $100\Omega + \left(\frac{1.5 \times 1}{1.5 + 1}\right) k\Omega + 150\Omega$
= $250\Omega + 600\Omega$
= 850Ω

NB: (a) For 2 resistors in parallel, "product over sum" is quickly used.

(b) Please pay attention the mixed units and the final conversions!

G. David Boswell | BÖ§ZïK Inc.™ MSE

Network Analysis *R*^T " ____ , *I*^T " ____ , *V*¹ " ____ , *V* ² " ____ , I \mathbf{p}

Response 08(b).

First, find the total current delivered by the source is

Network Analysis

Response 08(b). (cont.d)

Now, the total voltage drop across **R1** & **R4**, which are in *series,* is

$$
\Delta V = I_T (R_1 + R_4)
$$

= 20 mA \times (100 + 150) Ω
= 5V

So, the required p.d. across nodes A and B is

$$
V_{AB} = V_T - \Delta V
$$

= 17V - 5V
= 12 V

Network Analysis

Response 08(b). (cont.d)

And, finally, *power* loss in R₃ is

 $P_3 =$ V_{AB}^2 R_{3} (Joule's Law) = $\big(12V\big)^2$ *k*Ω $=144 \times 10^{-3} W$ $=144$ mW

R2S Legacy Tutorial 03 Electric Circuit Analysis

Anatomy of the Cell

Question 01.

The e.m.f. of a cell is **10.7 V**. When it is connected to a **12.0-Ω** load resistor, the terminal p.d. drooped by **10.0%**. Calculate

- (a) the terminal p.d. of the cell, *V*.
- (b) the load current *I*.
- (c) the internal resistance of the cell, *r*.
- (d) the rate of energy loss in the cell (i.e., power loss, $P_{\rm loss}$)
- (e) the *fractional efficiency* of the cell.

Network Reduction

P5#48 mW

Variable from

Question 02. 6–32 In Fig. 6–42, solve for *R*^T

- (a) Find R_{eq} , the equivalent resistance of the network shown.
- (b) Repeat (a) when $R_3 = 0$ and $R_4 \rightarrow \infty$ simultaneously. **ously.** The bridge is balanced when θ

Potential Divider **4-21** In Fig. 4–32, **a.** r otential r

Figure 4–34

4-30 Multi*Sim* In Fig. 4–34,

Question 03. c. Write the values of *V*1 , *V*2, and *V*3 next to resistors *R*1 ,

and *R*3 .

- (a) Find R_T , the total resistance of the network shown. *R*2 , and *R*3 .
- (b) Compute, V_1 , V_2 and V_3 , the respective voltage drops across each resistor. **Figure 4–32 Figure 4 Figure 4 Proposed 4 Figure 4 Proposed 4 Propo**

Question 04.

- (a) Find R_S , the total resistance of the network shown.
- (b) Compute the p.d. across each resistor.
- (c) Hence, calculate the V_C and V_B , the potentials at nodes **C** and **B**, respectively.

Question 05.

- (a) Find R_T , the total resistance of the network shown. #
- (b) Hence, compute the total current supplied and also the current through each each of the 4 resistors.

Question 06.

- (a) Find R_p , the total resistance of the network shown.
- (b) Compute the current supplied by the source voltage.
- (c) Compute the current through each resistor and verify the Kirchhoff's Current Law (KCL) holds true. $R = \frac{1}{2}$

BÖ§ZïK Inc.™ MSE $\sum_{i=1}^{\infty}$ in Fig. $\sum_{i=1}^{\infty}$

Question 07.

- (a) Find resistances **R1** and **R2** using Ohm's and Joule's Law.
- (b) Use "Current Division" <u>and</u> Ohm's Law to find I₁ and I₂.

Network Analysis are supposed to be when it is not in the support of the s

values in the second row of the table. Repeat this procedure for

Question 08. And record 6 calculate every voltage for every possible defect. All you will be every possible defect. All you will be expected

- (a) Find R_{eq} , the total resistance of the network shown.
- (b) Compute V_{AB} and the *power* losses in R_1 and R_5 .

R2S Legacy Tutorial 04 Mesh and Nodal Analyses

10.12.21 … High Noon*

G. David Boswell | BÖ§ZïK Inc.™ MSE

Electric Circuit Analysis

Thank You

© BÖ§ZïK Inc.™ All Publication Rights Reserved

For more information, please visit: http://www.boszik.net/projects