Complex Numbers

TUTORIAL 3

- Conversion (Rectangular to Polar form)
- 2. Conversion (Polar to Rectangular form)
- 3. Illustrative Examples

G. David Boswell | Chronicles of BÖ§ZïK Inc.™

The 21st Century

Representations of C-numbers				
Z	= a + bi	$= r \angle \theta_{polar}$	$= r(\cos\theta + i\sin\theta)$ trigonometric	$= re^{i\theta}$ exponential

The 4 common forms of complex numbers are:

Only the exponential form must have the angle in rads.!

Conversion of C-numbers

Very Important Formulations!

(From one form to another)

$z = a + bi = r \angle \theta$ rectangular polar	$= r(\cos\theta + i\sin\theta) = re^{i\theta}$ trigonometric exponential
Decompositions	Formulations
Decompositions	$z \in \mathbb{C}, a, b, r \in \mathbb{R}$
Modulus	$\operatorname{mod} z = z = r = \sqrt{a^2 + b^2}$
Argument	$\arg z = \theta = \tan^{-1}(b / a)$
Real Part	$\operatorname{Re} z = a = z \cos \theta = r \cos \theta$
Imaginary Part	$\operatorname{Im} z = b = z \sin \theta = r \sin \theta$

Example 3. Convert the following complex numbers that are in *Rectangular form* to the *Polar form*.

(a)
$$z = 5 + 12i$$

(b) $z = -2 + 2i$
(c) $z = -5 - 8i$
(d) $z = 3 - 4i$

Express all angles in radians, unless otherwise stated, such that. $-\pi < \theta \le \pi$

Response 3(a). Now, z = 5 + 12i is in Quadrant I.

First, compute the modulus and argument, then state the final solution in polar form.

$$|z| = \mod z \qquad \qquad \theta = \arg z \qquad \qquad \text{The solution is:} \\ = |5+12i| \qquad \qquad = \arg(5+12i) \qquad \qquad z = |z| \angle \theta \\ = \sqrt{5^2 + 12^2} \qquad \qquad = \tan^{-1} \left(\frac{12}{5}\right) \qquad \qquad = 13 \angle 1.176^c \\ = 1.176^c \qquad \qquad \qquad \text{Note that } r = |z| \end{aligned}$$

G. David Boswell | BÖ§ZïK Inc.™ MSE

Response 3(b). Now, z = -2 + 2i is in Quadrant II.

$$\begin{aligned} |z| &= \mod z & \theta = \arg z & \text{The solution is:} \\ &= |-2 + 2i| & = \arg(-2 + 2i) & z = |z| \angle \theta \\ &= \sqrt{2^2 + 2^2} & = \pi + \tan^{-1}\left(\frac{2}{-2}\right) & = 2\sqrt{2} \angle \frac{3\pi}{4} \\ &= \sqrt{4 \times 2} & = \frac{3\pi}{4} \end{aligned}$$

Response 3(c). Now, z = -5 - 8i is in Quadrant III.

$$|z| = \mod z \qquad \theta = \arg z \qquad \text{The solution is:}$$

$$= |-5 - 8i| \qquad = \arg(-5 - 8i) \qquad z = |z| \angle \theta$$

$$= \sqrt{5^2 + 8^2} \qquad = -\pi + \tan^{-1}\left(\frac{-8}{-5}\right) \qquad = \sqrt{89} \angle -2.129^c$$

$$= \sqrt{89} \text{ units} \qquad = -2.129^c$$

Response 3(d). Now, z = 3 - 4i is in Quadrant IV.

$$|z| = \mod z \qquad \theta = \arg z \qquad \text{The solution is:} = |z = 3 - 4i| \qquad = \arg(3 - 4i) \qquad z = |z| \angle \theta = \sqrt{3^2 + 4^2} \qquad = \tan^{-1}\left(\frac{-4}{3}\right) \qquad = 5 \angle -0.927^c = -0.927^c$$

Question 4. Convert the following complex numbers that are in *Rectangular form* to the *Polar form*.

(a)
$$z = 7 + 24i$$

(b) $z = -1 + \sqrt{3}i$
(c) $z = -1 - 3i$
(d) $z = 6 - 8i$

Express all angles in radians, unless otherwise stated, such that. $-\pi < \theta \leq \pi$

Example 4 Convert the following complex numbers that are in *Polar form* to the *Rectangular form*.

(a)
$$z = 100 \angle 60^{\circ}$$

(b) $z = 42 \angle 135^{\circ}$
(c) $z = 7 \angle -2.150^{c}$
(d) $z = 9 \angle -0.152^{c}$

All angles in radians, unless otherwise stated.

Response 4(a). Recall: $z = 100 \angle 60^{\circ}$

First, compute the real and imaginary parts. Then state the final solution in rectangular form.

$a = \operatorname{Re} z$	$b = \operatorname{Im} z$	The solution is:
$= r \cos \theta$	$= r \sin \theta$	z = a + bi
$=100\cos 60^{\circ}$	$=100\sin 60^{\circ}$	= 50.0 + 86.6i
$=100 \times 0.5$	$=100 \times 0.8660$	
= 50.0	= 86.6	Vork to 4 sig. figs. and ound-off to 3 sig. figs. BÖ§ZïK Inc.™ MSE

Response 4(b). Recall: $z = 42 \angle 135^{\circ}$

Again, compute the real and imaginary parts, and then state the final solution in rectangular form.

$a = \operatorname{Re} z$	$b = \operatorname{Im} z$	The solution is:
$= r \cos \theta$	$= r \sin \theta$	z = a + bi
$=42\cos 135^{\circ}$	$= 42 \sin 135^{\circ}$	$-21\sqrt{2} + 21\sqrt{2}i$
$= -21\sqrt{2}$	$=21\sqrt{2}$	$- 21\sqrt{2} + 21\sqrt{2t}$

Response 4(c). Recall: $z = 7 \angle -2.150^{\circ}$

A more systematic approach is to go from polar to 'trigonometric' and then to the rectangular form. So,

$$z = 7 \angle -2.150^{c}$$

$$= r(\cos\theta + i\sin\theta) \qquad < --- \text{ skippable step}$$

$$= 7\left[\cos(-2.150^{c}) + i\sin(-2.150^{c})\right]$$

$$= 7(-0.5474 - 0.5474i) \qquad < --- \text{ skippable step}$$

$$= -3.831 - 5.858i$$

Response 4(d). Recall: $z = 9 \angle -0.152^{\circ}$

A most efficient approach is to go from polar to 'trigonometric' and then to the rectangular form. So,

$$z = 9 \angle -0.152^{c}$$

= 9 $\left[\cos(-0.152^{c}) + i \sin(-0.152^{c}) \right]$
= 8.90 - 1.38*i*
Square brackets must be expanded with care

Question 5. Convert the following complex numbers that are in *Polar form* to the *Rectangular form*.

(a)
$$z = 10 \angle 30^{\circ}$$

(b) $z = 8 \angle 120^{\circ}$
(c) $z = 3 \angle -2.50^{c}$
(d) $z = 5 \angle -1^{c}$

All angles in radians, unless otherwise stated.

Tutorial 3 Complex Numbers

Question 4. Convert the following complex numbers that are in *Rectangular form* to the *Polar form*.

(a)
$$z = 7 + 24i$$

(b) $z = -1 + \sqrt{3}i$
(c) $z = -1 - 3i$
(d) $z = 6 - 8i$

Express all angles in radians, unless otherwise stated, such that. $-\pi < \theta \leq \pi$

Solution 4(a). Now, z = 7 + 24i is in Quadrant I.

$$|z| = \mod z \qquad \theta = \arg z \qquad \text{The solution is:} = |7 + 24i| \qquad = \arg(7 + 24i) \qquad z = |z| \angle \theta = \sqrt{7^2 + 24^2} \qquad = \tan^{-1}\left(\frac{24}{7}\right) \qquad = 25 \angle 1.287^c = 1.287^c$$

Solution 4(b). Now, $z = -1 + \sqrt{3}i$ is in Quadrant II.

First, compute the modulus and argument, then state the final solution in polar form.

$$|z| = \mod z \qquad \theta = \arg z \qquad \text{The solution is:} = |-1 + \sqrt{3}i| \qquad = \arg(-1 + \sqrt{3}i) \qquad z = |z| \angle \theta = \sqrt{1^2 + (\sqrt{3})^2} \qquad = \pi + \tan^{-1}(-\sqrt{3}) \qquad = 2\angle \frac{2\pi}{3} = 2 \text{ units} \qquad = \frac{2\pi}{3}$$

G. David Boswell | BÖ§ZïK Inc.™ MSE

Solution 4(c). Now, z = -1 - 3i is in Quadrant III.

$$|z| = \mod z \qquad \qquad \theta = \arg z \qquad \qquad \text{The solution is:} \\ = |-1 - 3i| \qquad \qquad = \arg(-1 - 3i) \qquad \qquad z = |z| \angle \theta \\ = \sqrt{1^2 + 3^2} \qquad \qquad = -\pi + \tan^{-1} \left(\frac{-3}{-1}\right) \qquad \qquad = \sqrt{10} \angle -1.893^c \\ = -1.893^c$$

Solution 4(d). Now, z = 6 - 8i is in Quadrant IV.

$$|z| = \mod z \qquad \theta = \arg z \qquad \text{The solution is:} = |z = 6 - 8i| \qquad = \arg(6 - 8i) \qquad z = |z| \angle \theta = \sqrt{6^2 + 8^2} \qquad = \tan^{-1}\left(\frac{-8}{6}\right) \qquad = 10 \angle -0.927^c = -0.927^c$$

Question 5. Convert the following complex numbers that are in *Polar form* to the *Rectangular form*.

(a)
$$z = 10 \angle 30^{\circ}$$

(b) $z = 8 \angle 120^{\circ}$
(c) $z = 3 \angle -2.50^{c}$
(d) $z = 5 \angle -1^{c}$

All angles in radians, unless otherwise stated.

Solution 5(a). Recall: $z = 10 \angle 30^{\circ}$

First, compute the real and imaginary parts. Then state the final solution in rectangular form.

$a = \operatorname{Re} z$	$b = \operatorname{Im} z$	The solution is:
$= r \cos \theta$	$= r \sin \theta$	z = a + bi
$=10\cos 30^{\circ}$	$=10\sin 30^{\circ}$	= 8.66 + 5.00i
$=10 \times 0.8660$	$= 10 \times 0.5$	
= 8.66	= 5.00	Work to 4 sig. figs. and round-off to 3 sig. figs.
		oell BO§ZîK Inc.™ MSE

Solution 5(b). Recall: $z = 8 \angle 120^{\circ}$

Again, compute the real and imaginary parts, and then state the final solution in rectangular form.

$a = \operatorname{Re} z$	$b = \operatorname{Im} z$	The solution is:
$= r \cos \theta$	$= r \sin \theta$	z = a + bi
$= 8 \cos 120^{\circ}$	$= 8 \sin 120^{\circ}$	$= -4 + 4\sqrt{3}i$
$=8\times\frac{-1}{2}$	$= 8 \times \frac{\sqrt{3}}{2}$	Note that the final
=-4	$=4\sqrt{3}^{-1}$	solution is EXACT.

Solution 5(c). Recall: $z = 3 \angle -2.50^c$

A more systematic approach is to go from polar to 'trigonometric' and then to the rectangular form. So,

$$z = 3 \angle -2.50^{c}$$

= $r(\cos\theta + i\sin\theta)$ <---- skippable step
= $3\left[\cos\left(-2.50^{c}\right) + i\sin\left(-2.50^{c}\right)\right]$
= $3(-0.8011 - 0.5985i)$ <---- skippable step
= $-2.40 - 1.80i$

Solution 5(d). Recall: $z = 5 \angle -1^c$

A most efficient approach is to go from polar to 'trigonometric' and then to the rectangular form. So,

$$z = 5 \angle -1^{c}$$

= 5 $\left[\cos(-1^{c}) + i \sin(-1^{c}) \right]$
= 2.70 - 4.21*i*
Square brackets must be expanded with care

Complex Numbers

Thank You

© BÖ§ZïK Inc.™ All Publication Rights Reserved

For more information, please visit: http://www.boszik.net/mse