CAPE PH7SICS

Unit 2

R2S NEXUS TM G. David Boszik

Please find both the answer key and the detailed solutions for the numerical and reasoning questions of your MCQ assignment on Electric Charge.

SECTION A: MCQ Answer Key

۱,	A	6.	B	ι(.	D
2.	D	1.	D	(2,	С
3.	C	8.	B	13,	A
4.	A	۹.	Ą	ιΨ.	n/a
5 .	C	[0,	С	เร.	~/a

Please Turn Over

SECTION B: Expanatory Solutions

Q·ØI

$$\emptyset \cdot \phi 2$$
 Recall the mathematical definition $\beta = 0$ average
current: $I = \Delta 0$
 Δt
 $\Rightarrow \Delta 0 = I \Delta t$

٢

More simplistic,
$$Q = It$$
.
Hence, the unit of charge is such that
 $1C = 1 A \cdot s$

$$Q \cdot q'3$$
 Net charge is
 $Q = NQ$ $q = charge on 1 particle.
 $N = H g$ charges
 $= (n N_A)e$
 $= 1 mpl. \times 6.02 \times 10^{23} electrons \times 1.60 \times 10^{10}$
 $= 9.63 \times 10^{-4} C$$

C

(O

h

-19 C electron

NB. Using more precise values (at 4 sig. fig.),

$$C = 1.602 \times 10^{-19} C$$

$$N_{\star} = 6.023 \times 10^{23} \text{ mol}^{-1}$$
would result in $Q = 9.659 \times 10^{-4} C$.

$$Q = NQ \qquad \text{where } Q = \text{total charge on} \\ all the electrons \\ = NN_A \times (2e) \\ = 2N_A e \qquad \text{since } n = 1 \text{ mole} \\ = 2 \text{ mol}(-\infty) \times 6.02 \times (0^{23} \text{ mol}^{-1} \times (-1.60 \times 10^{-19} \text{ C})) \\ \approx -1.9 \times 10^{5} \text{ C}$$

$$Q \cdot \phi 5$$
Electric Current, $i(t)$ is the rate of flow
of electric charges, $q(t)$
 \therefore $i(t) = dq$ (instantaneous value)
 dt
 $I(t) = \Delta Q$ (average value)

Q.
$$\phi G$$
 based on the definition in Q. ϕS , the
unit g electric current is that g
(charge per unit time)
Q. ϕP Recall: $\Delta Q = TAt$
(This equation only works when the current is
constant)
 $\therefore \Delta Q = 2A \times 2S$
 $= 4 A \cdot 5$
 $= 4 (C \cdot 5^{-1}) \cdot 5$ \downarrow
 $= 4 (C \cdot 5^{-1}) \cdot 5$ \downarrow
 $= 4 C$
Q. ϕS Recall: $\Delta Q = TAt$
 $\Rightarrow NQ = TAt$
 $\therefore N = TAt$
 $\Rightarrow NQ = TAt$
 $\Rightarrow 2.5 \times 10^{14}$ electrons.
Pag dose attertion to the UNITS!

8.
$$\phi 9$$
 Simply put,
 $Q = It$ convesting to S.I. unit!
 $= 500 \times 10^{-3} A \times 2.0 \text{ km} \times \frac{3600 \text{ s}}{1 \text{ km}}$
 $= 3600 \text{ C}$
NG: The "120 w" was a districtor! (typical in MCBs)
 $Q \cdot 10^{6}$ By definition, average current is
 $I = \frac{AQ}{\Delta t}$
 $= \frac{24 \times 10^{3} \text{ C}}{12 \text{ min} \times 60 \frac{\text{s}}{0.05}}$

8.11 In a closed loop,
$$\sum p.d.'s = OV$$
. But
potential difference is 'work done per unit charge'.
 $\therefore \qquad \sum \frac{\Delta W}{q} = O$ volts
 $\Leftrightarrow \qquad \sum OW = O$ joules
This is an example of the conservation of energy.

- & 12 An insulating material or substance would not be suitable to test Ohm's Law. Nitrogen is the worst conductor presented.
- &.13. Materials with 'loosely held' electrons to their nucleus makes good electrical conductors. Typically these are valence electrons in an atom or molecule.

 \bigcirc \bigcirc 2021: A Production of Project Momentum P