Appendix D

Logarithms

THE LOGARITHM TO BASE 10 of a number is the exponent or power to which 10 must be raised to yield the number. Since 1000 is 10^3 , the logarithm to base 10 of 1000 (written log 1000) is 3. Similarly, $\log 10000 = 4$, $\log 10 = 1$, $\log 0.1 = -1$, and $\log 0.001 = -3$.

Most hand calculators have a log key. When a number is entered into the calculator, its logarithm to base 10 can be found by pressing the log key. In this way we find that $\log 50 = 1.69897$ and $\log 0.035 = -1.45593$. Also, $\log 1 = 0$, which reflects the fact that $10^0 = 1$.

NATURAL LOGARITHMS are taken to the base e = 2.718, rather than 10. They can be found on most hand calculators by pressing the ln key. Since $e^0 = 1$, we have $\ln 1 = 0$.

Examples:

$$\log 971 = 2.9872$$
 $\ln 971 = 6.8783$ $\log 9.71 = 0.9872$ $\ln 9.71 = 2.2732$ $\log 0.0971 = -1.0128$ $\ln 0.0971 = -2.3320$

Exercises: Find the logarithms to base 10 of the following numbers.

```
(a) 454
               (f) 0.621
(b) 5280
               (g) 0.9463
(c) 96 500
               (h) 0.0353
(d) 30.48
               (i) 0.0022
(e) 1.057
               (i) 0.000 264 5
Ans. (a) 2.6571
                     (f) -0.2069
      (b) 3.7226
                     (g) -0.02397
      (c) 4.9845
                     (h) -1.4522
      (d) 1.4840
                     (i) -2.6576
      (e) 0.024 1
                     (j) -3.5776
```

ANTILOGARITHMS: Suppose we have an equation such as $3.5 = 10^{0.544}$; then we know that 0.544 is the log to base 10 of 3.5. Or, inversely, we can say that 3.5 is the *antilogarithm* (or *inverse logarithm*) of 0.544. Finding the antilogarithm of a number is simple with most hand calculators: Simply enter the number; then press first the inverse key and then the log key. Or, if the base is e rather than 10, press the inverse and ln keys.

Exercises: Find the numbers corresponding to the following logarithms.

 (a) 3.1568
 (f) 0.9142

 (b) 1.6934
 (g) 0.0008

 (c) 5.6934
 (h) -0.2493

 (d) 2.5000
 (i) -1.9965

 (e) 2.0436
 (j) -2.7994

Ans. (a) 1435 (f) 8.208 (*b*) 49.37 (g) 1.002 (c) 4.937×10^5 (h) 0.563 2 (d) 316.2 (*i*) 0.01008

(i) 0.001 587

(e) 110.6

BASIC PROPERTIES OF LOGARITHMS: Since logarithms are exponents, all properties of exponents are also properties of logarithms.

(1) The logarithm of the product of two numbers is the sum of their logarithms. Thus,

$$\log ab = \log a + \log b$$
 $\log (5280 \times 48) = \log 5280 + \log 48$

The logarithm of the quotient of two numbers is the logarithm of the numerator minus the logarithm of the denominator. For example,

$$\log \frac{a}{b} = \log a - \log b \qquad \log \frac{536}{24.5} = \log 536 - \log 24.5$$

(3) The logarithm of the nth power of a number is n times the logarithm of the number. Thus,

$$\log a^n = n \log a$$
 $\log (4.28)^3 = 3 \log 4.28$

(4) The logarithm of the *n*th root of a number is 1/n times the logarithm of the number. Thus,

$$\log \sqrt[n]{a} = \frac{1}{n} \log a$$
 $\log \sqrt{32} = \frac{1}{2} \log 32$ $\log \sqrt[3]{792} = \frac{1}{3} \log 792$

Solved Problem

Use a hand calculator to evaluate (a) $(5.2)^{0.4}$, (b) $(6.138)^3$, (c) $\sqrt[3]{5}$, (d) $(7.25 \times 10^{-11})^{0.25}$. 1

- (a) Enter 5.2; press y^x key; enter 0.4; press = key. The displayed answer is 1.934.
- (b) Enter 6.138; press y^x key; enter 3; press = key. The displayed answer is 231.2.
- (c) Enter 5; press y^x key; enter 0.333 3; press = key. The displayed answer is 1.710.
- (d) Enter 7.25×10^{-11} ; press y^x key; enter 0.25; press = key. The displayed answer is 2.918×10^{-3} .

Exercises

2 Evaluate each of the following.

> $(5) \frac{1}{239}$ (1) 28.32×0.08254 (6) $\frac{0.572 \times 31.8}{96.2}$ (2) $573 \times 6.96 \times 0.00481$ $(3) \frac{79.28}{63.57}$ (7) $47.5 \times \frac{779}{760} \times \frac{273}{300}$ $(4) \ \frac{65.38}{225.2}$

 $(8) (8.642)^2$

(9)	$(0.08642)^2$
(9)	(0.08642)

$$(10) (11.72)^3$$

$$(11) (0.0523)^3$$

$$(12) \sqrt{9463}$$

$$(13) \sqrt{946.3}$$

(14)
$$\sqrt{0.00661}$$

$$(15) \sqrt[3]{1.79}$$

$$(16) \sqrt[4]{0.182}$$

$$(17) \sqrt{643} \times (1.91)^3$$

(18)
$$(8.73 \times 10^{-2})(7.49 \times 10^{6})$$

(19)
$$(3.8 \times 10^{-5})^2 (1.9 \times 10^{-5})$$

$$(19) (3.8 \times 10^{-5})^{2} (1.9 \times 10^{-5})$$

Ans. (1) 2.337

(16)
$$0.653$$
 (24) 4.2×10^{-5}

(20)
$$\frac{8.5 \times 10^{-45}}{1.6 \times 10^{-22}}$$
(21)
$$\sqrt{2.54 \times 10^{6}}$$

(21)
$$\sqrt{2.54 \times 10^6}$$

(22)
$$\sqrt{9.44 \times 10^5}$$

(23)
$$\sqrt{7.2 \times 10^{-13}}$$

(24)
$$\sqrt[3]{7.3 \times 10^{-14}}$$

(25)
$$\sqrt{\frac{(1.1 \times 10^{-23})(6.8 \times 10^{-2})}{1.4 \times 10^{-24}}}$$

(28)
$$6.30 \log (2.95 \times 10^3)$$

(29)
$$8.09 \log (5.68 \times 10^{-16})$$

$$(30) (2.00)^{0.714}$$

(18)
$$6.54 \times 10^5$$
 (26) 4.05

$$(19) \ 2.7 \times 10^{-14} \qquad (27)$$

$$(27) -56$$

$$(29) -123$$

(22)
$$9.72 \times 10^2$$
 (30) 1.64

(20) 5.3×10^{-23}

 $(21) 1.59 \times 10^3$

(23)
$$8.5 \times 10^{-7}$$